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Exploiting global correlations to detect continuous gravitational waves
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Fully coherent searches (over realistic ranges of parameter space and year-long observation times) for
unknown sources of continuous gravitational waves are computationally prohibitive. Less expensive hi-
erarchical searches divide the data into shorter segments which are analyzed coherently, then detection
statistics from different segments are combined incoherently. Here, we present an improved method for
the incoherent step, the Global Correlation Transform (GCT), which exploits global parameter-space cor-
relations in the coherent detection statistic. Application to simulated data shows significant sensitivity im-
provements compared with previously available methods, increasing the spatial volume probed by more
than two orders of magnitude at lower computational cost.
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Searching for CW Sources — Direct detection of grav-
itational waves is the most significant remaining test of
Einstein’s General Theory of Relativity, and will become
an important new astronomical tool.

Rapidly rotating neutron stars are expected to gener-
ate continuous gravitational-wave (CW) signals via various
mechanisms [1, 2, 3, 4, 5]. Most such stars are electro-
magnetically invisible, but might be detected and studied
via gravitational waves. Recent simulations of neutron star
populations [6, 7] suggest that CW sources might eventu-
ally be detected with new instruments such as LIGO [8, 9].
World-wide efforts are underway to search for CW sig-
nals [10, 11, 12] and observational upper limits already
place some constraints on neutron star physics [13, 14].

Because the expected CW signals are weak, sensitive
data analysis methods are needed to extract these sig-
nals from detector noise. A powerful method is derived
in Ref. [15]. This scheme is based on the principle of
maximum likelihood detection, which leads to coherent
matched filtering. Rotating neutron stars emit monochro-
matic CW signals, apart from a slowly changing intrinsic
frequency. But the terrestrial detector location Doppler-
modulates the amplitude and phase of the waveform, as the
Earth moves relative to the solar system barycenter (SSB).
The parameters describing the signal’s amplitude variation
may be analytically eliminated by maximizing the coherent
matched-filtering statistic [15]. The remaining search pa-
rameters describing the signal’s phase are the source’s sky
location, frequency and frequency derivatives, and the re-
sulting coherent detection statistic is called the F -statistic.

This work considers isolated CW sources whose fre-
quency varies linearly with time in the SSB frame.
The corresponding phase parameter-space P is four-
dimensional. Standard “physical” coordinates on P are
the frequency f(t0) at some fiducial time t0, the fre-
quency’s first time derivative ḟ , and a unit vector n =

(cos δ cosα, cos δ sinα, sin δ) on the two-sphere S2,
pointing from the SSB to the source. Here α and δ are
right ascension and declination. Thus, a point in parameter
space p ∈ P may be labeled by p = {f(t0), ḟ ,n}. The
F -statistic Fp[h] is a functional of the detector data set h,
and is a function of the point in parameter space p ∈ P .

All-sky searches for unknown CW sources using the
F -statistic are computationally expensive. For maximum
sensitivity, one must convolve the full data set with sig-
nal waveforms (templates) corresponding to all possible
sources. But the number of templates required for a fully
coherent search increases as a high power of the observa-
tion time. For one year of data, the computational cost to
search a realistic range of parameter space exceeds the total
computing power on Earth [15, 16]. Thus a fully-coherent
search is limited to much shorter observation times.

Hierarchical semi-coherent search methods address this
problem [17, 18, 19]. The data is broken into segments of
duration T , where T is much smaller than one year. Each
segment is analyzed coherently, computing the F -statistic
on a coarse grid of templates. Then the F values from
all segments (or statistics derived from F ) are incoherently
combined using a common fine grid of templates, discard-
ing phase information between segments.

Different semi-coherent strategies are currently in use.
The Stack-Slide method [17, 18] sums F values along pu-
tative signal tracks in the time-frequency plane. The Hough
transform method [19] sums H(F − Fth) where Fth is
a constant predefined threshold. The Heavyside function
H(x) is unity for positive x and vanishes elsewhere. This
latter technique is currently used by Einstein@Home [12],
a public distributed computing project carrying out the
most sensitive blind CW searches.

A central element in these semi-coherent methods is the
design of, and link between, the coarse and fine grids. The
key quantity is the fractional loss (called mismatchM) in
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expected F -statistic for a given signal p at a nearby grid
point p′. Locally Taylor-expandingM (to quadratic order)
in the differences of the coordinates {f(t0), ḟ ,n} of p and
p′ defines a signature ++++ metric ds2 [16, 20, 21, 22].
Current methods consider parameter correlations in F to
linear order in T and discard higher orders in T from the
metric.

The F -statistic has strong global correlations [23, 24] in
the physical coordinates {f(t0), ḟ ,n}, that extend outside
the region in which the mismatch is well-approximated by
the local metric given above [25]. Recent work [24] has
shown that (for a given signal) the region where the ex-
pected F -statistic has maximal value may be described by
a separate equation for each order of T , when T is small
compared to one year. The solutions to each equations is a
hypersurface, whose intersections describe the global cor-
relations in F .

For currently used values of T (a day or longer) it is also
crucial to consider the fractional loss and global structure
of F to second-order in T [24]. For source frequencies
above 1 kHz and for values of T longer than about 60 h,
additional orders in T would be needed.

The GCT method — This work exploits the global
correlations in the coherent detection statistic F to con-
struct a significantly improved semi-coherent search tech-
nique for continuous gravitational waves. We call the new
method the “Global Correlation Transform” (GCT). The
GCT technique uses the improved understanding of the
global parameter-space correlations to make three impor-
tant improvements to the incoherent step.

First, in previous approaches the fine grid is obtained by
refining the coarse grid in three dimensions, ḟ and n. With
the GCT, the fine grid is obtained by refining the coarse
grid in only one dimension, ḟ . This greatly reduces the
computational cost at equal detection sensitivity, although
it also reduces the accuracy with which the parameters of a
source are estimated. But this is a very profitable trade, be-
cause in a hierarchical search the primary goal of the first
stages is to discard the uninteresting regions of parameter
space. Later follow-up stages use longer coherent integra-
tions to more accurately determine the source parameters.

Second, existing techniques combine the coherent re-
sults less effectively than the GCT technique, because they
do not use metric information beyond linear order in T .
This gives the GCT higher sensitivity at equal computa-
tional cost.

Third, the GCT can simultaneously do a Stack-Slide-
like summing of F values and a Hough-like summing of
H(F − Fth), with a lower total computational cost than
either one of these methods individually.

For a given CW source with realistic phase parameter
values (f ≤ 1 kHz, |ḟ | ≤ f/50 yr) and coherent data seg-
ment lengths T ≤ 60 h, the global-correlation structure of
the F -statistic is well described by the first- and second-

order global-correlation equations [24]:

ν(t) = f(t) + f(t)ξ̇(t) · n + ḟ ξ(t) · n ,
ν̇(t) = ḟ + f(t)ξ̈(t) · n + 2ḟ ξ̇(t) · n ,
where f(t) ≡ f(t0) + (t− t0)ḟ . (1)

Here ξ(t) ≡ rorb(t)/c, with rorb(t) denoting the vector
from the Earth’s barycenter to the SSB, and c the speed of
light. Apart from an overall factor, the quantities ν(t) and
ν̇(t) are called the “global-correlation parameters”. They
can be interpreted as the source’s instantaneous frequency
and frequency derivative at the detector, at detector time t.

The global-correlation parameters provide new coordi-
nates (ν and ν̇) on P . It is useful to also introduce new
(real-valued) sky coordinates nx and ny (as in [26]):

nx(t) + i ny(t) = f(t) τE cos δD cos δ ei[α−αD(t)]. (2)

Here τE = RE/c ≈ 21 ms is the light travel time from the
Earth center to the detector, and αD(t), δD are the detector
position at time t. The metric separation ds2 is

ds2/(2π)2 = dν2 T 2/12 + γ2 dν̇2 T 4/720 + dn2
x/2

+ dn2
y/2− dν dny T/(π`) + dν̇ dnx T

2/(π`)2 . (3)

In defining differences in coordinates {ν, ν̇, nx, ny}, the
time t in Eqs. (1) and (2) is the midpoint of the data seg-
ment spanning times [t − T/2, t + T/2], and γ = 1. To
simplify the form of the metric, T is taken to be a positive
integer number ` of sidereal days.

The new coordinates {ν, ν̇, nx, ny} have important ad-
vantages over the original coordinates {f, ḟ ,n}. The met-
ric is explicitly coordinate-independent (showing that P is
flat). In fact, the region around a point p in which the mis-
matchM is well-approximated by ds2 is much larger [25].

Consider a segment of data hp which contains a strong
CW source with phase parameters p. If the sky separation
patch is small enough to neglect the dnx and dny terms
in Eq. (3), then Fp′ [hp] is extremized for all p′ that have
the same global-correlation parameters ν and ν̇ as p. This
set of points in P forms a two-dimensional surface dν =
dν̇ = 0. Thus, for all sources within the sky patch, there
exists a different (f, ḟ) pair with those same values of ν
and ν̇. This property is exploited by the GCT algorithm.

An implementation of the GCT — To start, the
data set is divided into N segments of length T (po-
tentially including short gaps in operation) labeled by
the integer j = 1, ..., N . The segments span time inter-
vals [tj − T/2, tj + T/2]. The detector-time midpoint of
segment j is tj and t0 = 1

N

∑N

j=1 tj is the fiducial time.
Every segment is analyzed coherently on a coarse grid in

phase parameter space P . This grid is constructed so that
no point in P is farther than a specified distance from some
coarse-grid point, where the distance measure is defined by
the metric above. To simplify the grid construction, large
frequency bands are analyzed by breaking them into many
narrow sub-bands. For each data segment j, and at each
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coarse grid point, the F -statistic is evaluated, and “stats”
are obtained. Here, the word “stat” denotes the two-tuple
(Fj, H(Fj −Fth)).

A typical coarse grid (used for all data segments) is the
Cartesian product of a rectangular grid in f, ḟ and a grid
on the sky-sphere n ∈ S2. The spacings in f and ḟ are
∆f =

√
12m/(πT ) and ∆ḟ =

√
720m/(πT 2), where

m is the one-dimensional metric mismatch parameter [11].
The spacing of the coarse sky grid is chosen so that the
dnx and dny terms in Eq. (3) may be neglected. When or-
thogonally projected onto the equatorial unit disk, the sky
grid is uniform, and contains ≈ 2π/(∆ϕ)2 points, with
∆ϕ =

√
2m/(πf τE cos δD).

The incoherent step combines the “stats” obtained by the
coherent analysis, using a fine grid in P . At each point in
the fine grid, a “stat” value is obtained by summing one
stat value from each of the N coarse grids. The coarse
grid point is the one with the same sky position as the fine
grid point, which has the smallest separation in the global
correlation parameters, calculated using the metric Eq. (3)
above. The final result is a “stat” value at each point on
the fine grid. The first element of the stat is the sum of the
F -statistic values from the coarse grid points. The second
element is a number count, reflecting the number of data
segments in which Fth was exceeded. A detectable CW
signal leads to a fine-grid point with a high number count
and a large sum of F -statistics.

The spacing of the fine grid is determined from the met-
ric for the fractional loss of the expected

∑N

j=1Fj due to
parameter offsets between a putative signal location and a
fine grid point at the fiducial time t0. This may be calcu-
lated as in [17], by averaging the coarse-grid metric over
the N different segments. Since each coarse-grid met-
ric is no longer calculated at the data-segment midpoints
(but at t0), the coefficients change between segments be-
cause of the time-dependence of the parameter-space co-
ordinates. For our choice of t0 and T , the only additional
term in the metric Eq. (3) that does not average to zero is
(tj − t0)2T 2dν̇2/12, and the averaged metric takes a form
identical to Eq. (3) but with

γ2 = 1 +
60
T 2N

N∑
j=1

(tj − t0)2
, (4)

where the parameter offsets in Eq. (3) are calculated at the
fiducial time t0. Thus, the fine grid may be identical to
the coarse grid except that the spacing ∆ḟ is smaller by
a factor γ, which is of order N when the number of data
segments is large. No further refinement in frequency or
sky position is needed. Coherent integration over the total
observation time would require refining both ∆ḟ and ∆f
(increasing points ∝ N3), plus similar sky refinements.

GCT versus Hough performance — Monte Carlo sim-
ulations are used to illustrate the improved performance of
the GCT compared with the conventional Hough transform

FIG. 1: Receiver operating characteristic curve. The GCT per-
forms better than the conventional Hough transform method.

method. The software tools used are part of LALApps [27]
and employ accurate barycentering routines with timing er-
rors below 3µs. To provide a realistic comparison, sim-
ulated data sets covered the same time intervals as the
input data used for the current (S5R5) Einstein@Home
search [12]. Those data, from LIGO Hanford (H1, 4km)
and LIGO Livingston (L1, 4km), are not contiguous, but
contain gaps when the detectors are not operating. The to-
tal time interval spanned is about 264 days, containing 121
data segments of 25 h duration.

The false alarm probabilities are obtained using 5 000
simulated data sets with different realizations of stationary
Gaussian white noise, with one-sided strain spectral den-
sity
√
Sh = 3.25× 10−22 Hz−1/2. To find the detection

probabilities, different CW signals with fixed strain am-
plitude h0 are added. The parameters [15] are randomly
drawn from uniform distributions in cos(inclination ι), po-
larization ψ, initial phase φ0, the entire sky, f(t0) ∈
[100.1, 100.3] Hz, and ḟ ∈ [−1.29,−0.711] nHz/s.

Figure 1 compares the performance of the two meth-
ods. The receiver operating characteristic is the detection
probability as a function of false alarm probability, at fixed
source strain amplitude h0 = 6×10−24. Because the num-
ber count (using Fth = 2.6) is discrete, the two “curves”
in Fig. 1 consist of discrete points. The GCT (using ei-
ther number counts or summed F as a detection statistic)
is superior to the conventional Hough method.

In addition, the GCT is computationally faster. This
comparison used identical coherent stages (m = 0.3, with
2 981 coarse-grid points) for the GCT and conventional
Hough method. But in the incoherent combination stage,
the GCT and the conventional Hough method used different
fine grids. The GCT fine grid had 506 times as many points
as the coarse grid, but the Hough fine grid had 7 056 times
as many points. In spite of using 14 times fewer fine-grid
points, the GCT gave substantially higher sensitivity.

Figure 2 shows another comparison of the GCT and
Hough method. It compares the detection efficiencies for
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FIG. 2: Probability of detection as a function of source strain
amplitude h0, at a fixed false alarm probability of 1%.

different values of source strain amplitude h0, at a fixed
1% false alarm probability. As above, each point in Fig. 2
is obtained by analyzing 2 000 simulated data sets. Again,
the GCT in both modes of operation performs substantially
better than the Hough method. For example, compare the
source strain amplitude h0 needed to obtain 90% detection
probability. The strain required by the GCT in number-
count operation mode is smaller by a factor of about six
than the strain needed by the Hough method, making the
“distance reach” [15] of the GCT six times larger. This
increases the number of potentially detectable sources by
more than two orders of magnitude, since the “visible” spa-
tial volume increases as the cube of the distance. In fact the
lower computational cost of the GCT would also allow in-
creases in N or T , even further improving the sensitivity.

These results are qualitatively independent of frequency,
as confirmed in additional comparisons.

Conclusions — A new semi-coherent technique for de-
tecting continuous gravitational-wave sources has been de-
scribed. In contrast to previous approaches, the GCT ex-
ploits global parameter-space correlations in the coherent
detection statistic F , in the subsequent incoherent combi-
nation step. For coherent integration times T ≤ 60 h, the
global correlations are well-described by the second-order
(in T ) formulae presented here. The method should also be
extendible to longer coherent integration times by includ-
ing higher orders in T . It could also be extended to search
for CW signals from non-isolated sources (i.e. in binary
systems) as well as to space-based detectors.

Realistic Monte Carlo simulations show that the GCT
is much more sensitive than the Hough transform method
(currently the most sensitive CW search technique). The
GCT is also computationally simpler, and more efficient.

The LIGO Scientific Collaboration is currently working
to deploy the GCT on the Einstein@Home project [12],
starting with LIGO S6 data. The combination of new and
more sensitive search techniques, and new and more sen-
sitive data, greatly increases the chance of making the first

gravitational wave detection of a CW source. The detec-
tion of CW signals will provide new means to discover and
locate neutron stars, and will eventually provide unique in-
sights into the nature of matter at high densities.
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