Derivation of Fourier Coefficients for the Box Function

Wednesday, 9 February 2011
9:00 AM

Firstly, let us define ( my version of ) the 'box' function as a periodic signal :
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Next recall the Fourier analysis equation for a full cycle of the signal, so as to determine those all important Fourier
coefficients.
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Now apply the definition of f(t) - zero value outside of [-1/2, 1/2] and value of one within [-1/2, 1/2] - thus only need to actually
evaluate the integral within [-1/2, 1/2] as :
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...... remembering that the integral over an interval may be divided into a sum of integrals over contiguous sub-intervals.
Choosing sub-intervals of [-1, -1/2], [-1/2, 1/2] and [1/2, 1] is an obvious choice.
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... remembering that the integral of the ( natural ) exponential function is that function divided by the derivative of the
exponent's expression. In this case d/dt(—mikt) = —mik

= (-1/km)(1/20)[e (/D) _ g=mik(=1/2)]

= (1/km)(1/20)[e*ik/2 — g=mik/2]

..... remembering the imaginary part of a complex number Z can be deduced from (Z - 2)/2i
= 1/kmr Im{e*™k/2}

...... remembering that e*= cos(x) + sin(x) * i

= 1/km sin (n?k)

=1/2 [sin (52)/(mk/2)]

..... which I've expressed in this manner to jog anyone's memory for what is variously called/defined as the sinc function ie.
sinc(x) = sin(x)/x. Note immediately that all of the C(k)'s are real.

Now let's plot the C(k) assuming that k is a continuous variable, which it isn't. You'll need to know that :
lim [sin(x) /x] =1
x—0

and so we have:
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for k=0 ie. the 'DC component' then:
c(0)=1/2
for even values of k, k/2 is an integer and thus

_ (T[k)_o
sin > ) =

so C(k)=0 foreven k values.

for odd values of k, say let k = 2q + 1 where q € Z ( the set of integers )
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so C(k)=(—1)7/(2q + 1) for odd k values.
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