Derivation of Fourier Coefficients for the Box Function

Wednesday, 9 February 2011 9:00 AM

Firstly, let us define (my version of) the 'box' function as a periodic signal :

Next recall the Fourier analysis equation for a full cycle of the signal, so as to determine those all important Fourier coefficients.

$$C(k) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t)e^{-2\pi i \left(\frac{k}{T}\right)t} dt$$

Now apply the definition of f(t) - **zero** value outside of [-1/2, 1/2] and value of **one** within [-1/2, 1/2] - thus only need to actually evaluate the integral within [-1/2, 1/2] as:

$$= \frac{1}{2} \int_{-1}^{-\frac{1}{2}} \mathbf{0} e^{-2\pi i \left(\frac{k}{2}\right)t} dt + \frac{1}{2} \int_{-\frac{1}{2}}^{+\frac{1}{2}} \mathbf{1} e^{-2\pi i \left(\frac{k}{2}\right)t} dt + \frac{1}{2} \int_{+\frac{1}{2}}^{+1} \mathbf{0} e^{-2\pi i \left(\frac{k}{2}\right)t} dt$$

..... remembering that the integral over an interval may be divided into a sum of integrals over contiguous sub-intervals. Choosing sub-intervals of [-1, -1/2], [-1/2, 1/2] and [1/2, 1] is an obvious choice.

$$= \frac{1}{2} \int_{-\frac{1}{2}}^{+\frac{1}{2}} 1 e^{-2\pi i \left(\frac{k}{2}\right)t} dt$$

$$=\frac{1}{2}\int\limits_{-1/2}^{+1/2}e^{-\pi ikt}\,dt$$

$$=\frac{1}{2}\left[(e^{-\pi ikt})/(-\pi ik)\right]_{-1/2}^{1/2}$$

... remembering that the integral of the (natural) exponential function is that function divided by the derivative of the exponent's expression. In this case $d/dt(-\pi ikt) = -\pi ik$

=
$$(-1/k\pi)(1/2i)[e^{-\pi i k(1/2)} - e^{-\pi i k(-1/2)}]$$

=
$$(1/k\pi)(1/2i)[e^{+\pi ik/2} - e^{-\pi ik/2}]$$

..... remembering the imaginary part of a complex number Z can be deduced from $(Z - \underline{Z})/2i$

$$= 1/k\pi Im\{e^{+\pi ik/2}\}$$

..... remembering that $e^{ix} = \cos(x) + \sin(x) * i$

$$= 1/k\pi \sin\left(\frac{\pi k}{2}\right)$$

$$= 1/2 \left[\sin \left(\frac{\pi k}{2} \right) / (\pi k/2) \right]$$

..... which I've expressed in this manner to jog anyone's memory for what is variously called/defined as the **sinc** function ie. sinc(x) = sin(x)/x. Note immediately that all of the C(k)'s are real.

Now let's plot the C(k) assuming that k is a continuous variable, which it isn't. You'll need to know that :

$$\lim_{x \to 0} \left[\sin(x) / x \right] = 1$$

and so we have:

for k = 0 ie. the 'DC component' then:

$$C(0) = 1/2$$

for even values of k, k/2 is an integer and thus

$$\sin\left(\frac{\pi k}{2}\right) = 0$$

so C(k) = 0 for even k values.

for odd values of k, say let k = 2q + 1 where $q \in \mathbb{Z}$ (the set of integers)

$$\sin\left(\frac{(2q+1)\pi}{2}\right) = (-1)^q$$

so $C(k) = (-1)^q / (2q + 1)\pi$ for odd k values.

Fourier coefficients for the 'box' function listed along the k line in lollypop format (k values in gold)

