Derivation of Fourier Coefficients for the Box Function

Wednesday, 9 February 2011
9:00 AM

Firstly, let us define (my version of) the 'box' function as a periodic signal :

Next recall the Fourier analysis equation for a full cycle of the signal, so as to determine those all important Fourier coefficients.
$C(k)=\frac{1}{T} \int_{-T / 2}^{+T / 2} f(t) e^{-2 \pi i\left(\frac{k}{T}\right) t} d t$
Now apply the definition of $f(t)$ - zero value outside of $[-1 / 2,1 / 2]$ and value of one within $[-1 / 2,1 / 2]$ - thus only need to actually evaluate the integral within $[-1 / 2,1 / 2]$ as :

$$
=\frac{1}{2} \int_{-1}^{-\frac{1}{2}} 0 e^{-2 \pi i\left(\frac{k}{2}\right) t} d t+\frac{1}{2} \int_{-\frac{1}{2}}^{+\frac{1}{2}} 1 e^{-2 \pi i\left(\frac{k}{2}\right) t} d t+\frac{1}{2} \int_{+\frac{1}{2}}^{+1} 0 e^{-2 \pi i\left(\frac{k}{2}\right) t} d t
$$

...... rremembering that the integral over an interval may be divided into a sum of integrals over contiguous sub-intervals. Choosing sub-intervals of $[-1,-1 / 2],[-1 / 2,1 / 2]$ and $[1 / 2,1]$ is an obvious choice.

$$
=\frac{1}{2} \int_{-\frac{1}{2}}^{+\frac{1}{2}} 1 e^{-2 \pi i\left(\frac{k}{2}\right) t} d t
$$

$=\frac{1}{2} \int_{-1 / 2}^{+1 / 2} e^{-\pi i k t} d t$
$=\frac{1}{2}\left[\left(e^{-\pi i k t}\right) /(-\pi i k)\right]_{-1 / 2}^{1 / 2}$
... remembering that the integral of the (natural) exponential function is that function divided by the derivative of the exponent's expression. In this case $\mathrm{d} / \mathrm{dt}(-\pi i k \mathrm{t})=-\pi i k$
$=(-1 / k \pi)(1 / 2 i)\left[e^{-\pi i k(1 / 2)}-e^{-\pi i k(-1 / 2)}\right]$
$=(1 / k \pi)(1 / 2 i)\left[e^{+\pi i k / 2}-e^{-\pi i k / 2}\right]$
..... remembering the imaginary part of a complex number Z can be deduced from $(Z-\underline{Z}) / 2 i$
$=1 / k \pi \operatorname{Im}\left\{e^{+\pi i k / 2}\right\}$
...... remembering that $e^{i x}=\cos (x)+\sin (x) * i$
$=1 / \mathrm{k} \pi \sin \left(\frac{\pi k}{2}\right)$
$=1 / 2\left[\sin \left(\frac{\pi k}{2}\right) /(\pi k / 2)\right]$
..... which I've expressed in this manner to jog anyone's memory for what is variously called/defined as the sinc function ie. $\operatorname{sinc}(x)=\sin (x) / x$. Note immediately that all of the $C(k)$'s are real.

Now let's plot the $C(k)$ assuming that \boldsymbol{k} is a continuous variable, which it isn't. You'll need to know that :
$\lim _{x \rightarrow 0}[\sin (x) / x]=1$
and so we have :

for $k=0$ ie. the 'DC component' then :
$C(0)=1 / 2$
for even values of $k, k / 2$ is an integer and thus
$\sin \left(\frac{\pi k}{2}\right)=0$
so $C(k)=0$ for even k values.
for odd values of k, say let $k=2 q+1$ where $q \in \mathbb{Z}$ (the set of integers)
$\sin \left(\frac{(2 q+1) \pi}{2}\right)=(-1)^{q}$
so $C(k)=(-1)^{q} /(2 q+1) \pi$ for odd k values.

Fourier coefficients for the 'box' function listed along the k line in lollypop format (k walues in gold)

