Appendix C

Following on from the analysis within Appendices A \& B, let's examine FFTs where the transform size \mathbf{N} is of the form 4^{m} for some non-negative m .

For $\mathrm{m}=1$ we have a 4-point DFT, $\mathrm{w}_{4}=\exp [-\mathrm{i} * 2 * \pi / 4]=\exp [-\mathrm{i} * \pi / 2]=\mathbf{- i}$:

$$
\begin{aligned}
& \mathbf{F}[0]=\mathbf{f}[0]+\mathbf{f}[1]+\mathbf{f}[2]+\mathbf{f}[3] \\
& \mathbf{F}[1]=\mathbf{f}[0] \quad-\mathbf{i} * \mathbf{f}[1] \quad-\mathbf{f}[2] \quad+\mathbf{i}^{*} \mathbf{f}[3] \\
& \mathbf{F}[2]=\mathbf{f}[0]-\mathbf{f}[1] \quad+\mathbf{f}[2]-\mathbf{f}[3] \\
& \mathbf{F}[3]=\mathbf{f}[0] \quad+\mathbf{i} * \mathbf{f}[1]-\mathbf{f}[2] \quad-\mathbf{i} * \mathbf{f}[3]
\end{aligned}
$$

Again, there's a clue for an algorithm here. Let $\mathbf{N}=4^{\mathrm{m}}=4 * 4^{\mathrm{m}-1}$, so in (7) put $\mathbf{n}_{1}=4$ and \mathbf{n}_{2} $=4^{\mathrm{m}-1}=\mathrm{N} / 4$:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{N}}[\mathrm{~N} / 4 * \mathrm{r}+\mathrm{s}]= & \sum_{q=0}^{4-1} w_{4}^{q r} w_{N}^{q s} \sum_{p=0}^{N / 4-1} f[4 * p+q] w_{(N / 4)}^{p s} \\
= & \sum_{q=0}^{3} w_{4}^{q r} w_{N}^{q s} F_{(N / 4)}[4, q, s] \\
= & F_{(N / 4)}[4,0, s] \\
& +w_{4}^{r} w_{N}^{s} F_{(N / 4)}[4,1, s] \\
& +\left(w_{4}^{r}\right)^{2}\left(w_{N}^{s}\right)^{2} F_{(N / 4)}[4,2, s] \\
& +\left(w_{4}^{r}\right)^{3}\left(w_{N}^{s}\right)^{3} F_{(N / 4)}[4,3, s]
\end{aligned}
$$

or if we note that \mathbf{r} goes from 0 to 3 then :

$$
\begin{align*}
\mathrm{F}_{\mathrm{N}}[\mathrm{~s}] & =F_{(N / 4)}[4,0, s]+w_{N}^{s} F_{(N / 4)}[4,1, s] \\
& +\left(w_{N}^{s}\right)^{2} F_{(N / 4)}[4,2, s]+\left(w_{N}^{s}\right)^{3} F_{(N / 4)}[4,3, s] \quad(\mathrm{r}=0) \tag{11}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{N}}[\mathrm{~N} / 4+\mathrm{s}]=F_{(N / 4)}[4,0, s]-\mathrm{i} W_{N}^{s} F_{(N / 4)}[4,1, s] \\
& \quad-\left(W_{N}^{s}\right)^{2} F_{(N / 4)}[4,2, s]+\mathrm{i}\left(W_{N}^{s}\right)^{3} F_{(N / 4)}[4,3, s] \quad(\mathrm{r}=1) \tag{12}
\end{align*}
$$

$$
\begin{align*}
& F_{N}[\mathrm{~N} / 2+\mathrm{s}]=\boldsymbol{F}_{(N / 4)}[4,0, s]-W_{N}^{s} F_{(N / 4)}[4,1, s] \\
& \quad+\left(W_{N}^{s}\right)^{2} \boldsymbol{F}_{(N / 4)}[4,2, s]-\left(w_{N}^{s}\right)^{3} F_{(N / 4)}[4,3, s] \quad(\mathrm{r}=2) \tag{13}
\end{align*}
$$

$$
\begin{align*}
& F_{\mathrm{N}}[3 \mathrm{~N} / 4+\mathrm{s}]=F_{(N / 4)}[4,0, s]+\mathrm{i} \\
& \quad W_{N}^{s} F_{(N / 4)}[4,1, s] \tag{14}\\
& -\left(W_{N}^{s}\right)^{2} F_{(N / 4)}[4,2, s] \quad-\mathrm{i} \\
& \left(W_{N}^{s}\right)^{3} F_{(N / 4)}[4,3, s] \quad(\mathrm{r}=3)
\end{align*}
$$

as $w_{2}^{0}=1, w_{2}^{1}=-i, w_{2}^{2}=-1, w_{2}^{3}=i, w_{2}^{4}=1, w_{2}^{6}=-1, w_{2}^{9}=-i$
Thus you compare/contrast with the radix-2 analysis. If you already have $\mathbf{F}_{\mathrm{N} / 4}$ calculated then you can build $\mathbf{F}_{\mathbf{N}}$ by combining components indexed $\mathbf{0}$ modulo $\mathbf{4}\left(F_{(N / 4)}[4,0, s]\right.$) with components indexed $\mathbf{1}$ modulo 4 ($F_{(N / 4)}[4,1, s]$) and components indexed $\mathbf{2}$ modulo 4 (
$\left.F_{(N / 4)}[4,2, s]\right)$ and finally components indexed $\mathbf{3}$ modulo $4\left(F_{(N / 4)}[4,3, s]\right)$ via (11)-(14), then placing those combinations respectively in the first, second, third and fourth quarters of \mathbf{F}_{N}. $\mathbf{F}_{\mathrm{N} / 4}$ has length $\mathbf{N} / 4$ and s ranges from 0 to $\mathbf{N} / 4-1$, see (6), and $\mathbf{F}_{\mathbf{N}}$ is fourfold that length ie. \mathbf{N} and so will fit four sets of size $\mathbf{N} / 4$. Note that as :
s ranges from 0 to $\mathbf{N} / 4-1$,
$\mathbf{s}+\mathbf{N} / 4$ ranges from $\mathbf{N} / 4$ to $\mathbf{N} / 4+\mathbf{N} / 4-1=\mathbf{N} / 2-1$,
$\mathbf{s}+\mathbf{N} / 2$ ranges from $\mathbf{N} / 2$ to $\mathbf{N} / 2+\mathbf{N} / 4-1=3 \mathbf{N} / 4-1$,
$\mathbf{s}+3 \mathbf{N} / 4$ ranges from $3 \mathbf{N} / 4$ to $3 \mathbf{N} / 4+\mathbf{N} / 4-1=\mathbf{N}-1$
...... thus continuing the magic.
Likewise for radix-4 we may list the major tasks to be done by any code :

- DFT for size 4
- multiplication by the twiddle factors
- performing (11) through (14) and so effectively permuting the order of operands

Now the index permutations occur not with binary digit reversal, but quaternary digit reversal/reflection for radix-4, as demonstrated here for 16-points :

Original index in decimal	Original index in quaternary	Reversed index in quaternary	Reversed index in decimal
0	00	00	0
1	01	10	4
2	02	20	8
3	03	30	12
4	10	01	1
5	11	11	5
6	12	21	9
7	13	31	13
8	20	02	2
9	21	12	6
10	22	22	10
11	23	32	14
12	30	03	3
13	31	13	7
14	32	23	11
15	33	33	15

This then yields the following data flow for a 16 -point radix-4 DFT :

which is 'squatter' than the radix-2 case. Here one has to do 4 by 4 -point DFTs that being 4 *
$16=64$ multiplications, adding in 16 more for the twiddles totalling thus to 80 . Compared to the bland 16-point DFT (256 multiplications) gives $80 / 256 \sim 32 \%$, BUT would we have got to those 4-point DFTs sooner (than radix-2) in execution time, and correspondingly quicker back through the twiddles ?? This is a matter to be resolved by future testing

Now the question arises as to the twiddle combinations which involve the complex numbers $1,-1,+\mathbf{i}$ and $-\mathbf{i}$. A reasonable representation for a complex number \mathbf{Z} would be Cartesian pairs ie. $[\operatorname{Re}\{Z\}, \operatorname{Im}\{Z\}]$ in which case such multiplications are simple moves and/or sign changes rather than computation involving non-integral floats :

$$
\begin{array}{rlrl}
\text { if } \mathbf{Z}= & {[\operatorname{Re}\{Z\}, \operatorname{Im}\{Z\}]} \\
& \text { then } & \mathbf{i *} \mathbf{Z}=[-\operatorname{Im}\{Z\}, \operatorname{Re}\{Z\}] \\
& \text { and } & -\mathbf{i} * \mathbf{Z}=[\operatorname{Im}\{Z\},-\operatorname{Re}\{Z\}] & \\
& \text { with } & \mathbf{1 * Z}=[\operatorname{Re}\{Z\}, \operatorname{Im}\{Z\}] & (\text { doh !) } \\
& \text { and } & \mathbf{- 1 *} \mathbf{Z}=[-\operatorname{Re}\{Z\},-\operatorname{Im}\{Z\}] & (\text { doh-er !) }
\end{array}
$$

Other radices would necessarily invoke (co-)sinusoidal components for Argand plane angles not a multiple of $\pi / 2$.

