Appendix C

Following on from the analysis within Appendices A & B, let's examine FFTs where the
transform size N is of the form 4™ for some non-negative m.

For m =1 we have a 4-point DFT, w = exp[-1*2* /4] =exp[-1* w2]=-i:

Flo]=f[0] + f[1] + f[2] + f{[3]
F[1]=1[0] - i*f[1] - f[2] +i*f[3]
F[2]=f[0] - f[1] + f[2] - f[3]
F[3]=1[0] +i*f[1] - f[2] -i*f[3]
Again, there's a clue for an algorithm here. Let N =4"= 4 * 4™ 's0in (7) putn ,=4andn,
=4™! = N/4:

N/4-1

ZW4 wy Z f[4*P+Q]WN/4

p=

FN[N/4* r+s]

= ZW4 Wy (N/4)[4aq13]
- (N/4)[4!0,S]
+ WZWZF(N,4)[4,1,S]
+ (W:)z(wi,)zF(N/4)[4,2,s]
+ (W2)3(WZ)3F(N/4)[4,3,3]

or if we note that r goes from 0 to 3 then :

FN[S]= F(N/4)[4,0,S] + W’SVF(N/4)[4,1,S]
+ (WR)Fna(42,8] + (W) Fiye[4,3,8] =0y

FN[N/4+S]= F(N/4)[4,0,S] - i W’SVF(N/4)[4,1,S]

; (WZ)ZF(N/4)[4,2,S] +i (W,SV)3F(N,4)[4,3,S] (r=1)(12)

FN2+s]= Fiy,.(4,0,s] - Fnal4.1,5]
* (WN) (N/4)[4!2!S] - (N) (N/4)[4’3!S] (r=2) (13)

F[3Na+s]= Fy0[4,0,8] +i WiF(y4,(4,1,5]
- (WR) Final4,2,s] -1 (WR)'Fiygl4,3,8] (r=3)09

Thus you compare/contrast with the radix-2 analysis. If you already have F, calculated

then you can build F by combining components indexed 0 modulo 4 (F, 4)[4, 0,s]) with
components indexed 1 modulo 4 (Fy, 4)[4, 1,s])and components indexed 2 modulo 4 (

Fy,»[4,2,s])and finally components indexed 3 modulo 4 (F(,,,[4,3,s]) via(11)-(14),
then placing those combinations respectively in the first, second, third and fourth quarters of F_ .
F, has length N/4 and s ranges from 0 to N/4 -1, see (6), and F_ is fourfold that length ie. N and so
will fit four sets of size N/4. Note that as :

s ranges from 0 to N/4 -1,
s + N/4 ranges from N/4 to N/4 + N/4—1=N/2 -1,
s + N/2 ranges from N/2 to N/2 + N/4—1=3N/4 -1,
s + 3N/4 ranges from 3N/4 to 3N/4+ N/4-1=N-1
...... thus continuing the magic.
Likewise for radix-4 we may list the major tasks to be done by any code :
— DFT for size 4
— multiplication by the twiddle factors
— performing (11) through (14) and so effectively permuting the order of operands

Now the index permutations occur not with binary digit reversal, but quaternary digit
reversal/reflection for radix-4, as demonstrated here for 16-points :

Original index in Original index in Reversed index in Reversed index in
decimal quaternary quaternary decimal
0 00 00 0
1 01 10 4
2 02 20 8
3 03 30 12
4 10 01 1
5 11 11
6 12 21 9
7 13 31 13
8 20 02 2
9 21 12
10 22 22 10
11 23 32 14
12 30 03
13 31 13 7
14 32 23 11
15 33 33 15
This then yields the following data flow for a 16-point radix-4 DFT :
(fEI’ f1’ fE’ f3 ! f4’ fﬁ’ fEi’ f?’ fE’ fQ’ f1EI’ f11’ f12’ f13’ f14’ f15)
I | | |]
(fo, T T 1) (fs, f5=|f9= f3) (5 f5 fio Fi) (f3= f?=| f11= f15)
4-p3i|'||tDFT 4-poirt DF T 4-;:-:|i|LtDFT 4-poirt DF T
| | | |
(zw 2,2y, 23) (24, 25 Lo ZT) (Za= o L1y 2y (213,213, 2,4, Z45)
| | | |
|
combine x.nfilth twiclclle
(FEI’ F1’ FE’ F3’ F4’ FE’ FEi’ FT’ FE’ FQ’ F1EI’ F11’ F12’ F13’ F1-'1’ F15)

which is 'squatter' than the radix-2 case. Here one has to do 4 by 4-point DFTs that being 4 *

16 = 64 multiplications, adding in 16 more for the twiddles totalling thus to 80. Compared to the
bland 16-point DFT (256 multiplications) gives 80/256 ~ 32 %, BUT would we have got to those
4-point DFTs sooner (than radix-2) in execution time, and correspondingly quicker back through
the twiddles ?? This is a matter to be resolved by future testing

Now the question arises as to the twiddle combinations which involve the complex numbers
1, -1, +iand —i. A reasonable representation for a complex number Z would be Cartesian pairs ie.
[Re{Z}, Im{Z}] in which case such multiplications are simple moves and/or sign changes rather
than computation involving non-integral floats :

if Z= [Re{Z}, Im{Z}]
then i*Z=[-Im{Z}, Re{Z}]
and -i*Z=[Im{Z}, -Re{Z}]
with 1*Z =[Re{Z}, Im{Z}] (doh!)
and -1*Z=[-Re{Z},-Im{Z}] (doh-er!)

Other radices would necessarily invoke (co-)sinusoidal components for Argand plane angles
not a multiple of 0/2.

	Appendix C

