
Appendix C

Following on from the analysis within Appendices A & B, let's examine FFTs where the 
transform size N is of the form 4m for some non-negative m. 

For m = 1 we have a 4-point DFT, w
4 
= exp[- i * 2 * π /4 ] = exp[- i * π/2 ] = - i :

F[0] = f[0]    +    f[1]    +   f[2]    +     f[3]

F[1] = f[0]    -  i*f[1]    -    f[2]    + i* f[3]

F[2] = f[0]    -     f[1]    +   f[2]    -      f[3]

F[3] = f[0]    + i*f[1]    -    f[2]    - i * f[3]

Again, there's a clue for an algorithm here. Let N = 4m =  4 * 4m-1 , so in (7) put n
1
 = 4 and n

2

= 4m-1  = N/4:
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or if we note that r goes from 0 to 3 then :
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Thus you compare/contrast with the radix-2 analysis. If you already have F
N/4 

calculated 

then you can build F
N 

 by combining components indexed 0 modulo 4 ( F (N /4)[4, 0, s]  ) with 

components indexed 1 modulo 4 ( F (N /4)[4,1, s ]  ) and  components indexed 2 modulo 4 (
F (N /4)[4,2, s]  ) and finally  components indexed 3 modulo 4 ( F (N /4)[4,3, s ]  ) via (11) - (14), 

then placing those combinations respectively in the first, second, third and fourth quarters of F
N 

. 

F
N/4  

has length N/4 and s ranges from 0 to N/4 -1, see (6), and F
N
 is fourfold that length ie. N and so

will fit four sets of  size N/4. Note that as : 

s ranges from 0 to N/4 -1,  

s + N/4 ranges from N/4 to N/4 + N/4 – 1 = N/2 -1,

s + N/2 ranges from N/2 to N/2 + N/4 – 1 = 3N/4 -1,

s + 3N/4 ranges from 3N/4 to 3N/4 + N/4 – 1 = N – 1 

…...  thus continuing the magic.

Likewise for radix-4 we may list the major tasks to be done by any code :

– DFT for size 4

– multiplication by the twiddle factors

– performing (11)  through (14) and so effectively permuting the order of  operands



Now the index permutations occur not with binary digit reversal, but quaternary digit 
reversal/reflection for radix-4, as demonstrated here for 16-points :

Original index in
decimal 

Original index in
quaternary

Reversed index in
quaternary

Reversed index in
decimal

0 00 00 0

1 01 10 4

2 02 20 8

3 03 30 12

4 10 01 1

5 11 11 5

6 12 21 9

7 13 31 13

8 20 02 2

9 21 12 6

10 22 22 10

11 23 32 14

12 30 03 3

13 31 13 7

14 32 23 11

15 33 33 15

This then yields the following data flow for a 16-point radix-4 DFT :

which is 'squatter' than the radix-2 case. Here one has to do 4 by 4-point DFTs that being 4 *



16 = 64 multiplications, adding in 16 more for the twiddles totalling thus to 80. Compared to the 
bland 16-point DFT ( 256 multiplications ) gives 80/256 ~ 32 %, BUT would we have got to those 
4-point  DFTs sooner ( than radix-2 ) in execution time, and correspondingly quicker back through 
the twiddles ?? This is a matter to be resolved by future testing …. 

Now the question arises as to the twiddle combinations which involve the complex numbers 
1, -1, + i and – i. A reasonable  representation for a complex number Z would be Cartesian pairs ie. 
[Re{Z}, Im{Z}] in which case such multiplications are simple moves and/or sign changes rather 
than computation involving non-integral floats  :

if Z =  [Re{Z}, Im{Z}] 

then  i*Z = [-Im{Z}, Re{Z}]

and - i*Z = [Im{Z}, -Re{Z}]

with     1*Z = [Re{Z}, Im{Z}] ( doh ! )

and -1*Z = [-Re{Z}, -Im{Z}] ( doh-er ! )

Other radices would necessarily invoke (co-)sinusoidal components for Argand plane angles 
not a multiple of π/2. 
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