
Appendix C

Following on from the analysis within Appendices A & B, let's examine FFTs where the
transform size N is of the form 4m for some non-negative m.

For m = 1 we have a 4-point DFT, w
4
= exp[- i * 2 * π /4] = exp[- i * π/2] = - i :

F[0] = f[0] + f[1] + f[2] + f[3]

F[1] = f[0] - i*f[1] - f[2] + i* f[3]

F[2] = f[0] - f[1] + f[2] - f[3]

F[3] = f[0] + i*f[1] - f[2] - i * f[3]

Again, there's a clue for an algorithm here. Let N = 4m = 4 * 4m-1 , so in (7) put n
1
 = 4 and n

2

= 4m-1 = N/4:

F
N
[N/4* r + s] = ∑

q=0

4−1

w4
qrwN

qs ∑
p=0

N /4−1

f [4∗p+q]w (N /4)
ps

 = ∑
q=0

3

w4
qrwN

qsF (N /4)[4,q ,s]

 = F (N /4)[4,0,s]

+ w 4
rw N

s F (N /4)[4,1,s]

+ (w 4
r
)
2
(w N

s
)
2F (N /4)[4,2,s]

+ (w 4
r)3(w N

s)3F (N /4)[4,3,s]

or if we note that r goes from 0 to 3 then :

 F
N
[s] = F (N /4)[4,0,s] + wN

s F (N /4) [4,1,s]

 + (w N
s
)
2F (N /4)[4,2,s] + (w N

s
)
3F (N /4) [4,3,s] (r = 0) (11)

 F
N
[N/4 + s] = F (N /4)[4,0,s] - i wN

s F (N /4) [4,1,s]

 - (w N
s)2F (N /4)[4,2,s] + i (w N

s)3F (N /4) [4,3,s] (r = 1) (12)

F
N
[N/2 + s] = F (N /4)[4,0,s] - wN

s F (N /4) [4,1,s]

 + (w N
s)2F (N /4)[4,2,s] - (w N

s)3F (N /4) [4,3,s] (r = 2) (13)

F
N
[3N/4 + s] = F (N /4)[4,0,s] + i wN

s F (N /4) [4,1,s]

 - (w N
s)2F (N /4)[4,2,s] - i (w N

s)3F (N /4) [4,3,s] (r = 3) (14)

as w2
0
=1 , w2

1
=−i , w2

2
=−1 , w2

3
=i , w2

4
=1 , w2

6
=−1 , w2

9
=−i

Thus you compare/contrast with the radix-2 analysis. If you already have F
N/4

calculated

then you can build F
N

 by combining components indexed 0 modulo 4 (F (N /4)[4, 0, s]) with

components indexed 1 modulo 4 (F (N /4)[4,1, s]) and components indexed 2 modulo 4 (
F (N /4)[4,2, s]) and finally components indexed 3 modulo 4 (F (N /4)[4,3, s]) via (11) - (14),

then placing those combinations respectively in the first, second, third and fourth quarters of F
N

.

F
N/4

has length N/4 and s ranges from 0 to N/4 -1, see (6), and F
N
 is fourfold that length ie. N and so

will fit four sets of size N/4. Note that as :

s ranges from 0 to N/4 -1,

s + N/4 ranges from N/4 to N/4 + N/4 – 1 = N/2 -1,

s + N/2 ranges from N/2 to N/2 + N/4 – 1 = 3N/4 -1,

s + 3N/4 ranges from 3N/4 to 3N/4 + N/4 – 1 = N – 1

…... thus continuing the magic.

Likewise for radix-4 we may list the major tasks to be done by any code :

– DFT for size 4

– multiplication by the twiddle factors

– performing (11) through (14) and so effectively permuting the order of operands

Now the index permutations occur not with binary digit reversal, but quaternary digit
reversal/reflection for radix-4, as demonstrated here for 16-points :

Original index in
decimal

Original index in
quaternary

Reversed index in
quaternary

Reversed index in
decimal

0 00 00 0

1 01 10 4

2 02 20 8

3 03 30 12

4 10 01 1

5 11 11 5

6 12 21 9

7 13 31 13

8 20 02 2

9 21 12 6

10 22 22 10

11 23 32 14

12 30 03 3

13 31 13 7

14 32 23 11

15 33 33 15

This then yields the following data flow for a 16-point radix-4 DFT :

which is 'squatter' than the radix-2 case. Here one has to do 4 by 4-point DFTs that being 4 *

16 = 64 multiplications, adding in 16 more for the twiddles totalling thus to 80. Compared to the
bland 16-point DFT (256 multiplications) gives 80/256 ~ 32 %, BUT would we have got to those
4-point DFTs sooner (than radix-2) in execution time, and correspondingly quicker back through
the twiddles ?? This is a matter to be resolved by future testing ….

Now the question arises as to the twiddle combinations which involve the complex numbers
1, -1, + i and – i. A reasonable representation for a complex number Z would be Cartesian pairs ie.
[Re{Z}, Im{Z}] in which case such multiplications are simple moves and/or sign changes rather
than computation involving non-integral floats :

if Z = [Re{Z}, Im{Z}]

then i*Z = [-Im{Z}, Re{Z}]

and - i*Z = [Im{Z}, -Re{Z}]

with 1*Z = [Re{Z}, Im{Z}] (doh !)

and -1*Z = [-Re{Z}, -Im{Z}] (doh-er !)

Other radices would necessarily invoke (co-)sinusoidal components for Argand plane angles
not a multiple of π/2.

	Appendix C

